use core::{fmt, slice};
use core::num::Wrapping as w;
use rand_core::{RngCore, SeedableRng, Error, le};
use rand_core::block::{BlockRngCore, BlockRng64};
use prng::isaac_array::IsaacArray;
#[allow(non_camel_case_types)]
type w64 = w<u64>;
const RAND_SIZE_LEN: usize = 8;
const RAND_SIZE: usize = 1 << RAND_SIZE_LEN;
#[derive(Clone, Debug)]
#[cfg_attr(feature="serde1", derive(Serialize, Deserialize))]
pub struct Isaac64Rng(BlockRng64<Isaac64Core>);
impl RngCore for Isaac64Rng {
#[inline(always)]
fn next_u32(&mut self) -> u32 {
self.0.next_u32()
}
#[inline(always)]
fn next_u64(&mut self) -> u64 {
self.0.next_u64()
}
fn fill_bytes(&mut self, dest: &mut [u8]) {
self.0.fill_bytes(dest)
}
fn try_fill_bytes(&mut self, dest: &mut [u8]) -> Result<(), Error> {
self.0.try_fill_bytes(dest)
}
}
impl SeedableRng for Isaac64Rng {
type Seed = <Isaac64Core as SeedableRng>::Seed;
fn from_seed(seed: Self::Seed) -> Self {
Isaac64Rng(BlockRng64::<Isaac64Core>::from_seed(seed))
}
fn from_rng<S: RngCore>(rng: S) -> Result<Self, Error> {
BlockRng64::<Isaac64Core>::from_rng(rng).map(|rng| Isaac64Rng(rng))
}
}
impl Isaac64Rng {
#[deprecated(since="0.5.0", note="use the FromEntropy or SeedableRng trait")]
pub fn new_unseeded() -> Self {
Self::new_from_u64(0)
}
pub fn new_from_u64(seed: u64) -> Self {
Isaac64Rng(BlockRng64::new(Isaac64Core::new_from_u64(seed)))
}
}
#[derive(Clone)]
#[cfg_attr(feature="serde1", derive(Serialize, Deserialize))]
pub struct Isaac64Core {
#[cfg_attr(feature="serde1",serde(with="super::isaac_array::isaac_array_serde"))]
mem: [w64; RAND_SIZE],
a: w64,
b: w64,
c: w64,
}
impl fmt::Debug for Isaac64Core {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
write!(f, "Isaac64Core {{}}")
}
}
impl BlockRngCore for Isaac64Core {
type Item = u64;
type Results = IsaacArray<Self::Item>;
fn generate(&mut self, results: &mut IsaacArray<Self::Item>) {
self.c += w(1);
let mut a = self.a;
let mut b = self.b + self.c;
const MIDPOINT: usize = RAND_SIZE / 2;
#[inline]
fn ind(mem:&[w64; RAND_SIZE], v: w64, amount: usize) -> w64 {
let index = (v >> amount).0 as usize % RAND_SIZE;
mem[index]
}
#[inline]
fn rngstep(mem: &mut [w64; RAND_SIZE],
results: &mut [u64; RAND_SIZE],
mix: w64,
a: &mut w64,
b: &mut w64,
base: usize,
m: usize,
m2: usize) {
let x = mem[base + m];
*a = mix + mem[base + m2];
let y = *a + *b + ind(&mem, x, 3);
mem[base + m] = y;
*b = x + ind(&mem, y, 3 + RAND_SIZE_LEN);
results[RAND_SIZE - 1 - base - m] = (*b).0;
}
let mut m = 0;
let mut m2 = MIDPOINT;
for i in (0..MIDPOINT/4).map(|i| i * 4) {
rngstep(&mut self.mem, results, !(a ^ (a << 21)), &mut a, &mut b, i + 0, m, m2);
rngstep(&mut self.mem, results, a ^ (a >> 5 ), &mut a, &mut b, i + 1, m, m2);
rngstep(&mut self.mem, results, a ^ (a << 12), &mut a, &mut b, i + 2, m, m2);
rngstep(&mut self.mem, results, a ^ (a >> 33), &mut a, &mut b, i + 3, m, m2);
}
m = MIDPOINT;
m2 = 0;
for i in (0..MIDPOINT/4).map(|i| i * 4) {
rngstep(&mut self.mem, results, !(a ^ (a << 21)), &mut a, &mut b, i + 0, m, m2);
rngstep(&mut self.mem, results, a ^ (a >> 5 ), &mut a, &mut b, i + 1, m, m2);
rngstep(&mut self.mem, results, a ^ (a << 12), &mut a, &mut b, i + 2, m, m2);
rngstep(&mut self.mem, results, a ^ (a >> 33), &mut a, &mut b, i + 3, m, m2);
}
self.a = a;
self.b = b;
}
}
impl Isaac64Core {
fn init(mut mem: [w64; RAND_SIZE], rounds: u32) -> Self {
fn mix(a: &mut w64, b: &mut w64, c: &mut w64, d: &mut w64,
e: &mut w64, f: &mut w64, g: &mut w64, h: &mut w64) {
*a -= *e; *f ^= *h >> 9; *h += *a;
*b -= *f; *g ^= *a << 9; *a += *b;
*c -= *g; *h ^= *b >> 23; *b += *c;
*d -= *h; *a ^= *c << 15; *c += *d;
*e -= *a; *b ^= *d >> 14; *d += *e;
*f -= *b; *c ^= *e << 20; *e += *f;
*g -= *c; *d ^= *f >> 17; *f += *g;
*h -= *d; *e ^= *g << 14; *g += *h;
}
let mut a = w(0x647c4677a2884b7c);
let mut b = w(0xb9f8b322c73ac862);
let mut c = w(0x8c0ea5053d4712a0);
let mut d = w(0xb29b2e824a595524);
let mut e = w(0x82f053db8355e0ce);
let mut f = w(0x48fe4a0fa5a09315);
let mut g = w(0xae985bf2cbfc89ed);
let mut h = w(0x98f5704f6c44c0ab);
for _ in 0..rounds {
for i in (0..RAND_SIZE/8).map(|i| i * 8) {
a += mem[i ]; b += mem[i+1];
c += mem[i+2]; d += mem[i+3];
e += mem[i+4]; f += mem[i+5];
g += mem[i+6]; h += mem[i+7];
mix(&mut a, &mut b, &mut c, &mut d,
&mut e, &mut f, &mut g, &mut h);
mem[i ] = a; mem[i+1] = b;
mem[i+2] = c; mem[i+3] = d;
mem[i+4] = e; mem[i+5] = f;
mem[i+6] = g; mem[i+7] = h;
}
}
Self { mem, a: w(0), b: w(0), c: w(0) }
}
pub fn new_from_u64(seed: u64) -> Self {
let mut key = [w(0); RAND_SIZE];
key[0] = w(seed);
Self::init(key, 1)
}
}
impl SeedableRng for Isaac64Core {
type Seed = [u8; 32];
fn from_seed(seed: Self::Seed) -> Self {
let mut seed_u64 = [0u64; 4];
le::read_u64_into(&seed, &mut seed_u64);
let mut seed_extended = [w(0); RAND_SIZE];
for (x, y) in seed_extended.iter_mut().zip(seed_u64.iter()) {
*x = w(*y);
}
Self::init(seed_extended, 2)
}
fn from_rng<R: RngCore>(mut rng: R) -> Result<Self, Error> {
let mut seed = [w(0u64); RAND_SIZE];
unsafe {
let ptr = seed.as_mut_ptr() as *mut u8;
let slice = slice::from_raw_parts_mut(ptr, RAND_SIZE * 8);
rng.try_fill_bytes(slice)?;
}
for i in seed.iter_mut() {
*i = w(i.0.to_le());
}
Ok(Self::init(seed, 2))
}
}
#[cfg(test)]
mod test {
use {RngCore, SeedableRng};
use super::Isaac64Rng;
#[test]
fn test_isaac64_construction() {
let seed = [1,0,0,0, 23,0,0,0, 200,1,0,0, 210,30,0,0,
0,0,0,0, 0,0,0,0, 0,0,0,0, 0,0,0,0];
let mut rng1 = Isaac64Rng::from_seed(seed);
assert_eq!(rng1.next_u64(), 14964555543728284049);
let mut rng2 = Isaac64Rng::from_rng(rng1).unwrap();
assert_eq!(rng2.next_u64(), 919595328260451758);
}
#[test]
fn test_isaac64_true_values_64() {
let seed = [1,0,0,0, 0,0,0,0, 23,0,0,0, 0,0,0,0,
200,1,0,0, 0,0,0,0, 210,30,0,0, 0,0,0,0];
let mut rng1 = Isaac64Rng::from_seed(seed);
let mut results = [0u64; 10];
for i in results.iter_mut() { *i = rng1.next_u64(); }
let expected = [
15071495833797886820, 7720185633435529318,
10836773366498097981, 5414053799617603544,
12890513357046278984, 17001051845652595546,
9240803642279356310, 12558996012687158051,
14673053937227185542, 1677046725350116783];
assert_eq!(results, expected);
let seed = [57,48,0,0, 0,0,0,0, 50,9,1,0, 0,0,0,0,
49,212,0,0, 0,0,0,0, 148,38,0,0, 0,0,0,0];
let mut rng2 = Isaac64Rng::from_seed(seed);
for _ in 0..10000 { rng2.next_u64(); }
for i in results.iter_mut() { *i = rng2.next_u64(); }
let expected = [
18143823860592706164, 8491801882678285927, 2699425367717515619,
17196852593171130876, 2606123525235546165, 15790932315217671084,
596345674630742204, 9947027391921273664, 11788097613744130851,
10391409374914919106];
assert_eq!(results, expected);
}
#[test]
fn test_isaac64_true_values_32() {
let seed = [1,0,0,0, 0,0,0,0, 23,0,0,0, 0,0,0,0,
200,1,0,0, 0,0,0,0, 210,30,0,0, 0,0,0,0];
let mut rng = Isaac64Rng::from_seed(seed);
let mut results = [0u32; 12];
for i in results.iter_mut() { *i = rng.next_u32(); }
let expected = [
3477963620, 3509106075,
687845478, 1797495790,
227048253, 2523132918,
4044335064, 1260557630,
4079741768, 3001306521,
69157722, 3958365844];
assert_eq!(results, expected);
}
#[test]
fn test_isaac64_true_values_mixed() {
let seed = [1,0,0,0, 0,0,0,0, 23,0,0,0, 0,0,0,0,
200,1,0,0, 0,0,0,0, 210,30,0,0, 0,0,0,0];
let mut rng = Isaac64Rng::from_seed(seed);
assert_eq!(rng.next_u64(), 15071495833797886820);
assert_eq!(rng.next_u32(), 687845478);
assert_eq!(rng.next_u32(), 1797495790);
assert_eq!(rng.next_u64(), 10836773366498097981);
assert_eq!(rng.next_u32(), 4044335064);
assert_eq!(rng.next_u64(), 12890513357046278984);
assert_eq!(rng.next_u32(), 69157722);
}
#[test]
fn test_isaac64_true_bytes() {
let seed = [1,0,0,0, 0,0,0,0, 23,0,0,0, 0,0,0,0,
200,1,0,0, 0,0,0,0, 210,30,0,0, 0,0,0,0];
let mut rng = Isaac64Rng::from_seed(seed);
let mut results = [0u8; 32];
rng.fill_bytes(&mut results);
let expected = [100, 131, 77, 207, 155, 181, 40, 209,
102, 176, 255, 40, 238, 155, 35, 107,
61, 123, 136, 13, 246, 243, 99, 150,
216, 167, 15, 241, 62, 149, 34, 75];
assert_eq!(results, expected);
}
#[test]
fn test_isaac64_new_uninitialized() {
let mut rng = Isaac64Rng::new_from_u64(0);
let mut results = [0u64; 16];
for i in results.iter_mut() { *i = rng.next_u64(); }
let expected: [u64; 16] = [
0xF67DFBA498E4937C, 0x84A5066A9204F380, 0xFEE34BD5F5514DBB,
0x4D1664739B8F80D6, 0x8607459AB52A14AA, 0x0E78BC5A98529E49,
0xFE5332822AD13777, 0x556C27525E33D01A, 0x08643CA615F3149F,
0xD0771FAF3CB04714, 0x30E86F68A37B008D, 0x3074EBC0488A3ADF,
0x270645EA7A2790BC, 0x5601A0A8D3763C6A, 0x2F83071F53F325DD,
0xB9090F3D42D2D2EA];
assert_eq!(results, expected);
}
#[test]
fn test_isaac64_clone() {
let seed = [1,0,0,0, 0,0,0,0, 23,0,0,0, 0,0,0,0,
200,1,0,0, 0,0,0,0, 210,30,0,0, 0,0,0,0];
let mut rng1 = Isaac64Rng::from_seed(seed);
let mut rng2 = rng1.clone();
for _ in 0..16 {
assert_eq!(rng1.next_u64(), rng2.next_u64());
}
}
#[test]
#[cfg(all(feature="serde1", feature="std"))]
fn test_isaac64_serde() {
use bincode;
use std::io::{BufWriter, BufReader};
let seed = [1,0,0,0, 23,0,0,0, 200,1,0,0, 210,30,0,0,
57,48,0,0, 0,0,0,0, 0,0,0,0, 0,0,0,0];
let mut rng = Isaac64Rng::from_seed(seed);
let buf: Vec<u8> = Vec::new();
let mut buf = BufWriter::new(buf);
bincode::serialize_into(&mut buf, &rng).expect("Could not serialize");
let buf = buf.into_inner().unwrap();
let mut read = BufReader::new(&buf[..]);
let mut deserialized: Isaac64Rng = bincode::deserialize_from(&mut read).expect("Could not deserialize");
for _ in 0..300 {
assert_eq!(rng.next_u64(), deserialized.next_u64());
}
}
}