1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261
use runtime::{Inner, Runtime}; use reactor::Reactor; use std::io; use tokio_reactor; use tokio_threadpool::Builder as ThreadPoolBuilder; use tokio_threadpool::park::DefaultPark; use tokio_timer::clock::{self, Clock}; use tokio_timer::timer::{self, Timer}; /// Builds Tokio Runtime with custom configuration values. /// /// Methods can be chained in order to set the configuration values. The /// Runtime is constructed by calling [`build`]. /// /// New instances of `Builder` are obtained via [`Builder::new`]. /// /// See function level documentation for details on the various configuration /// settings. /// /// [`build`]: #method.build /// [`Builder::new`]: #method.new /// /// # Examples /// /// ``` /// # extern crate tokio; /// # extern crate tokio_threadpool; /// # use tokio::runtime::Builder; /// /// # pub fn main() { /// // create and configure ThreadPool /// let mut threadpool_builder = tokio_threadpool::Builder::new(); /// threadpool_builder /// .name_prefix("my-runtime-worker-") /// .pool_size(4); /// /// // build Runtime /// let runtime = Builder::new() /// .threadpool_builder(threadpool_builder) /// .build(); /// // ... call runtime.run(...) /// # let _ = runtime; /// # } /// ``` #[derive(Debug)] pub struct Builder { /// Thread pool specific builder threadpool_builder: ThreadPoolBuilder, /// The clock to use clock: Clock, } impl Builder { /// Returns a new runtime builder initialized with default configuration /// values. /// /// Configuration methods can be chained on the return value. pub fn new() -> Builder { let mut threadpool_builder = ThreadPoolBuilder::new(); threadpool_builder.name_prefix("tokio-runtime-worker-"); Builder { threadpool_builder, clock: Clock::new(), } } /// Set the `Clock` instance that will be used by the runtime. pub fn clock(&mut self, clock: Clock) -> &mut Self { self.clock = clock; self } /// Set builder to set up the thread pool instance. #[deprecated( since="0.1.9", note="use the `core_threads`, `blocking_threads`, `name_prefix`, \ and `stack_size` functions on `runtime::Builder`, instead")] #[doc(hidden)] pub fn threadpool_builder(&mut self, val: ThreadPoolBuilder) -> &mut Self { self.threadpool_builder = val; self } /// Set the maximum number of worker threads for the `Runtime`'s thread pool. /// /// This must be a number between 1 and 32,768 though it is advised to keep /// this value on the smaller side. /// /// The default value is the number of cores available to the system. /// /// # Examples /// /// ``` /// # extern crate tokio; /// # extern crate futures; /// # use tokio::runtime; /// /// # pub fn main() { /// let mut rt = runtime::Builder::new() /// .core_threads(4) /// .build() /// .unwrap(); /// # } /// ``` pub fn core_threads(&mut self, val: usize) -> &mut Self { self.threadpool_builder.pool_size(val); self } /// Set the maximum number of concurrent blocking sections in the `Runtime`'s /// thread pool. /// /// When the maximum concurrent `blocking` calls is reached, any further /// calls to `blocking` will return `NotReady` and the task is notified once /// previously in-flight calls to `blocking` return. /// /// This must be a number between 1 and 32,768 though it is advised to keep /// this value on the smaller side. /// /// The default value is 100. /// /// # Examples /// /// ``` /// # extern crate tokio; /// # extern crate futures; /// # use tokio::runtime; /// /// # pub fn main() { /// let mut rt = runtime::Builder::new() /// .blocking_threads(200) /// .build(); /// # } /// ``` pub fn blocking_threads(&mut self, val: usize) -> &mut Self { self.threadpool_builder.max_blocking(val); self } /// Set name prefix of threads spawned by the `Runtime`'s thread pool. /// /// Thread name prefix is used for generating thread names. For example, if /// prefix is `my-pool-`, then threads in the pool will get names like /// `my-pool-1` etc. /// /// The default prefix is "tokio-runtime-worker-". /// /// # Examples /// /// ``` /// # extern crate tokio; /// # extern crate futures; /// # use tokio::runtime; /// /// # pub fn main() { /// let mut rt = runtime::Builder::new() /// .name_prefix("my-pool-") /// .build(); /// # } /// ``` pub fn name_prefix<S: Into<String>>(&mut self, val: S) -> &mut Self { self.threadpool_builder.name_prefix(val); self } /// Set the stack size (in bytes) for worker threads. /// /// The actual stack size may be greater than this value if the platform /// specifies minimal stack size. /// /// The default stack size for spawned threads is 2 MiB, though this /// particular stack size is subject to change in the future. /// /// # Examples /// /// ``` /// # extern crate tokio; /// # extern crate futures; /// # use tokio::runtime; /// /// # pub fn main() { /// let mut rt = runtime::Builder::new() /// .stack_size(32 * 1024) /// .build(); /// # } /// ``` pub fn stack_size(&mut self, val: usize) -> &mut Self { self.threadpool_builder.stack_size(val); self } /// Create the configured `Runtime`. /// /// The returned `ThreadPool` instance is ready to spawn tasks. /// /// # Examples /// /// ``` /// # extern crate tokio; /// # use tokio::runtime::Builder; /// # pub fn main() { /// let runtime = Builder::new().build().unwrap(); /// // ... call runtime.run(...) /// # let _ = runtime; /// # } /// ``` pub fn build(&mut self) -> io::Result<Runtime> { use std::collections::HashMap; use std::sync::{Arc, Mutex}; // Get a handle to the clock for the runtime. let clock1 = self.clock.clone(); let clock2 = clock1.clone(); let timers = Arc::new(Mutex::new(HashMap::<_, timer::Handle>::new())); let t1 = timers.clone(); // Spawn a reactor on a background thread. let reactor = Reactor::new()?.background()?; // Get a handle to the reactor. let reactor_handle = reactor.handle().clone(); let pool = self.threadpool_builder .around_worker(move |w, enter| { let timer_handle = t1.lock().unwrap() .get(w.id()).unwrap() .clone(); tokio_reactor::with_default(&reactor_handle, enter, |enter| { clock::with_default(&clock1, enter, |enter| { timer::with_default(&timer_handle, enter, |_| { w.run(); }); }) }); }) .custom_park(move |worker_id| { // Create a new timer let timer = Timer::new_with_now(DefaultPark::new(), clock2.clone()); timers.lock().unwrap() .insert(worker_id.clone(), timer.handle()); timer }) .build(); Ok(Runtime { inner: Some(Inner { reactor, pool, }), }) } }