pub struct Shared<'g, T: 'g> { /* fields omitted */ }
A pointer to an object protected by the epoch GC.
The pointer is valid for use only during the lifetime 'g
.
The pointer must be properly aligned. Since it is aligned, a tag can be stored into the unused
least significant bits of the address.
Returns a new null pointer.
use crossbeam_epoch::Shared;
let p = Shared::<i32>::null();
assert!(p.is_null());
Returns true
if the pointer is null.
use crossbeam_epoch::{self as epoch, Atomic, Owned};
use std::sync::atomic::Ordering::SeqCst;
let a = Atomic::null();
let guard = &epoch::pin();
assert!(a.load(SeqCst, guard).is_null());
a.store(Owned::new(1234), SeqCst);
assert!(!a.load(SeqCst, guard).is_null());
Converts the pointer to a raw pointer (without the tag).
use crossbeam_epoch::{self as epoch, Atomic, Owned};
use std::sync::atomic::Ordering::SeqCst;
let o = Owned::new(1234);
let raw = &*o as *const _;
let a = Atomic::from(o);
let guard = &epoch::pin();
let p = a.load(SeqCst, guard);
assert_eq!(p.as_raw(), raw);
Dereferences the pointer.
Returns a reference to the pointee that is valid during the lifetime 'g
.
Dereferencing a pointer is unsafe because it could be pointing to invalid memory.
Another concern is the possiblity of data races due to lack of proper synchronization.
For example, consider the following scenario:
- A thread creates a new object:
a.store(Owned::new(10), Relaxed)
- Another thread reads it:
*a.load(Relaxed, guard).as_ref().unwrap()
The problem is that relaxed orderings don't synchronize initialization of the object with
the read from the second thread. This is a data race. A possible solution would be to use
Release
and Acquire
orderings.
use crossbeam_epoch::{self as epoch, Atomic};
use std::sync::atomic::Ordering::SeqCst;
let a = Atomic::new(1234);
let guard = &epoch::pin();
let p = a.load(SeqCst, guard);
unsafe {
assert_eq!(p.deref(), &1234);
}
Converts the pointer to a reference.
Returns None
if the pointer is null, or else a reference to the object wrapped in Some
.
Dereferencing a pointer is unsafe because it could be pointing to invalid memory.
Another concern is the possiblity of data races due to lack of proper synchronization.
For example, consider the following scenario:
- A thread creates a new object:
a.store(Owned::new(10), Relaxed)
- Another thread reads it:
*a.load(Relaxed, guard).as_ref().unwrap()
The problem is that relaxed orderings don't synchronize initialization of the object with
the read from the second thread. This is a data race. A possible solution would be to use
Release
and Acquire
orderings.
use crossbeam_epoch::{self as epoch, Atomic};
use std::sync::atomic::Ordering::SeqCst;
let a = Atomic::new(1234);
let guard = &epoch::pin();
let p = a.load(SeqCst, guard);
unsafe {
assert_eq!(p.as_ref(), Some(&1234));
}
Takes ownership of the pointee.
Panics if this pointer is null, but only in debug mode.
This method may be called only if the pointer is valid and nobody else is holding a
reference to the same object.
use crossbeam_epoch::{self as epoch, Atomic};
use std::sync::atomic::Ordering::SeqCst;
let a = Atomic::new(1234);
unsafe {
let guard = &epoch::unprotected();
let p = a.load(SeqCst, guard);
drop(p.into_owned());
}
Returns the tag stored within the pointer.
use crossbeam_epoch::{self as epoch, Atomic, Owned};
use std::sync::atomic::Ordering::SeqCst;
let a = Atomic::<u64>::from(Owned::new(0u64).with_tag(2));
let guard = &epoch::pin();
let p = a.load(SeqCst, guard);
assert_eq!(p.tag(), 2);
Returns the same pointer, but tagged with tag
. tag
is truncated to be fit into the
unused bits of the pointer to T
.
use crossbeam_epoch::{self as epoch, Atomic};
use std::sync::atomic::Ordering::SeqCst;
let a = Atomic::new(0u64);
let guard = &epoch::pin();
let p1 = a.load(SeqCst, guard);
let p2 = p1.with_tag(2);
assert_eq!(p1.tag(), 0);
assert_eq!(p2.tag(), 2);
assert_eq!(p1.as_raw(), p2.as_raw());
Returns the machine representation of the pointer.
Returns a new pointer pointing to the tagged pointer data
.
Performs copy-assignment from source
. Read more
Formats the value using the given formatter. Read more
This method tests for self
and other
values to be equal, and is used by ==
. Read more
This method tests for !=
.
This method returns an Ordering
between self
and other
. Read more
fn max(self, other: Self) -> Self | 1.21.0 [src] |
Compares and returns the maximum of two values. Read more
fn min(self, other: Self) -> Self | 1.21.0 [src] |
Compares and returns the minimum of two values. Read more
This method returns an ordering between self
and other
values if one exists. Read more
This method tests less than (for self
and other
) and is used by the <
operator. Read more
This method tests less than or equal to (for self
and other
) and is used by the <=
operator. Read more
This method tests greater than (for self
and other
) and is used by the >
operator. Read more
This method tests greater than or equal to (for self
and other
) and is used by the >=
operator. Read more
Returns a new atomic pointer pointing to ptr
.
use crossbeam_epoch::{Atomic, Shared};
let a = Atomic::<i32>::from(Shared::<i32>::null());
Returns a new pointer pointing to raw
.
Panics if raw
is not properly aligned.
use crossbeam_epoch::Shared;
let p = unsafe { Shared::from(Box::into_raw(Box::new(1234)) as *const _) };
assert!(!p.is_null());
Formats the value using the given formatter.
Returns the "default value" for a type. Read more
🔬 This is a nightly-only experimental API. (try_from
)
The type returned in the event of a conversion error.
🔬 This is a nightly-only experimental API. (try_from
)
🔬 This is a nightly-only experimental API. (try_from
)
The type returned in the event of a conversion error.
🔬 This is a nightly-only experimental API. (try_from
)
Immutably borrows from an owned value. Read more
Mutably borrows from an owned value. Read more
🔬 This is a nightly-only experimental API. (get_type_id
)
this method will likely be replaced by an associated static
Creates owned data from borrowed data, usually by cloning. Read more
🔬 This is a nightly-only experimental API. (toowned_clone_into
)
recently added
Uses borrowed data to replace owned data, usually by cloning. Read more