[−][src]Struct owning_ref::OwningRefMut
An mutable owning reference.
This wraps an owner O
and a reference &mut T
pointing
at something reachable from O::Target
while keeping
the ability to move self
around.
The owner is usually a pointer that points at some base type.
For more details and examples, see the module and method docs.
Methods
impl<O, T: ?Sized> OwningRefMut<O, T>
[src]
impl<O, T: ?Sized> OwningRefMut<O, T>
pub fn new(o: O) -> Self where
O: StableAddress,
O: DerefMut<Target = T>,
[src]
pub fn new(o: O) -> Self where
O: StableAddress,
O: DerefMut<Target = T>,
Creates a new owning reference from a owner initialized to the direct dereference of it.
Example
extern crate owning_ref; use owning_ref::OwningRefMut; fn main() { let owning_ref_mut = OwningRefMut::new(Box::new(42)); assert_eq!(*owning_ref_mut, 42); }
pub unsafe fn new_assert_stable_address(o: O) -> Self where
O: DerefMut<Target = T>,
[src]
pub unsafe fn new_assert_stable_address(o: O) -> Self where
O: DerefMut<Target = T>,
Like new
, but doesn’t require O
to implement the StableAddress
trait.
Instead, the caller is responsible to make the same promises as implementing the trait.
This is useful for cases where coherence rules prevents implementing the trait without adding a dependency to this crate in a third-party library.
pub fn map<F, U: ?Sized>(self, f: F) -> OwningRef<O, U> where
O: StableAddress,
F: FnOnce(&mut T) -> &U,
[src]
pub fn map<F, U: ?Sized>(self, f: F) -> OwningRef<O, U> where
O: StableAddress,
F: FnOnce(&mut T) -> &U,
Converts self
into a new shared owning reference that points at
something reachable from the previous one.
This can be a reference to a field of U
, something reachable from a field of
U
, or even something unrelated with a 'static
lifetime.
Example
extern crate owning_ref; use owning_ref::OwningRefMut; fn main() { let owning_ref_mut = OwningRefMut::new(Box::new([1, 2, 3, 4])); // create a owning reference that points at the // third element of the array. let owning_ref = owning_ref_mut.map(|array| &array[2]); assert_eq!(*owning_ref, 3); }
pub fn map_mut<F, U: ?Sized>(self, f: F) -> OwningRefMut<O, U> where
O: StableAddress,
F: FnOnce(&mut T) -> &mut U,
[src]
pub fn map_mut<F, U: ?Sized>(self, f: F) -> OwningRefMut<O, U> where
O: StableAddress,
F: FnOnce(&mut T) -> &mut U,
Converts self
into a new mutable owning reference that points at
something reachable from the previous one.
This can be a reference to a field of U
, something reachable from a field of
U
, or even something unrelated with a 'static
lifetime.
Example
extern crate owning_ref; use owning_ref::OwningRefMut; fn main() { let owning_ref_mut = OwningRefMut::new(Box::new([1, 2, 3, 4])); // create a owning reference that points at the // third element of the array. let owning_ref_mut = owning_ref_mut.map_mut(|array| &mut array[2]); assert_eq!(*owning_ref_mut, 3); }
pub fn try_map<F, U: ?Sized, E>(self, f: F) -> Result<OwningRef<O, U>, E> where
O: StableAddress,
F: FnOnce(&mut T) -> Result<&U, E>,
[src]
pub fn try_map<F, U: ?Sized, E>(self, f: F) -> Result<OwningRef<O, U>, E> where
O: StableAddress,
F: FnOnce(&mut T) -> Result<&U, E>,
Tries to convert self
into a new shared owning reference that points
at something reachable from the previous one.
This can be a reference to a field of U
, something reachable from a field of
U
, or even something unrelated with a 'static
lifetime.
Example
extern crate owning_ref; use owning_ref::OwningRefMut; fn main() { let owning_ref_mut = OwningRefMut::new(Box::new([1, 2, 3, 4])); // create a owning reference that points at the // third element of the array. let owning_ref = owning_ref_mut.try_map(|array| { if array[2] == 3 { Ok(&array[2]) } else { Err(()) } }); assert_eq!(*owning_ref.unwrap(), 3); }
pub fn try_map_mut<F, U: ?Sized, E>(self, f: F) -> Result<OwningRefMut<O, U>, E> where
O: StableAddress,
F: FnOnce(&mut T) -> Result<&mut U, E>,
[src]
pub fn try_map_mut<F, U: ?Sized, E>(self, f: F) -> Result<OwningRefMut<O, U>, E> where
O: StableAddress,
F: FnOnce(&mut T) -> Result<&mut U, E>,
Tries to convert self
into a new mutable owning reference that points
at something reachable from the previous one.
This can be a reference to a field of U
, something reachable from a field of
U
, or even something unrelated with a 'static
lifetime.
Example
extern crate owning_ref; use owning_ref::OwningRefMut; fn main() { let owning_ref_mut = OwningRefMut::new(Box::new([1, 2, 3, 4])); // create a owning reference that points at the // third element of the array. let owning_ref_mut = owning_ref_mut.try_map_mut(|array| { if array[2] == 3 { Ok(&mut array[2]) } else { Err(()) } }); assert_eq!(*owning_ref_mut.unwrap(), 3); }
pub unsafe fn map_owner<F, P>(self, f: F) -> OwningRefMut<P, T> where
O: StableAddress,
P: StableAddress,
F: FnOnce(O) -> P,
[src]
pub unsafe fn map_owner<F, P>(self, f: F) -> OwningRefMut<P, T> where
O: StableAddress,
P: StableAddress,
F: FnOnce(O) -> P,
Converts self
into a new owning reference with a different owner type.
The new owner type needs to still contain the original owner in some way so that the reference into it remains valid. This function is marked unsafe because the user needs to manually uphold this guarantee.
pub fn map_owner_box(self) -> OwningRefMut<Box<O>, T>
[src]
pub fn map_owner_box(self) -> OwningRefMut<Box<O>, T>
Converts self
into a new owning reference where the owner is wrapped
in an additional Box<O>
.
This can be used to safely erase the owner of any OwningRefMut<O, T>
to a OwningRefMut<Box<Erased>, T>
.
pub fn erase_owner<'a>(self) -> OwningRefMut<O::Erased, T> where
O: IntoErased<'a>,
[src]
pub fn erase_owner<'a>(self) -> OwningRefMut<O::Erased, T> where
O: IntoErased<'a>,
Erases the concrete base type of the owner with a trait object.
This allows mixing of owned references with different owner base types.
Example
extern crate owning_ref; use owning_ref::{OwningRefMut, Erased}; fn main() { // NB: Using the concrete types here for explicitnes. // For less verbose code type aliases like `BoxRef` are provided. let owning_ref_mut_a: OwningRefMut<Box<[i32; 4]>, [i32; 4]> = OwningRefMut::new(Box::new([1, 2, 3, 4])); let owning_ref_mut_b: OwningRefMut<Box<Vec<(i32, bool)>>, Vec<(i32, bool)>> = OwningRefMut::new(Box::new(vec![(0, false), (1, true)])); let owning_ref_mut_a: OwningRefMut<Box<[i32; 4]>, i32> = owning_ref_mut_a.map_mut(|a| &mut a[0]); let owning_ref_mut_b: OwningRefMut<Box<Vec<(i32, bool)>>, i32> = owning_ref_mut_b.map_mut(|a| &mut a[1].0); let owning_refs_mut: [OwningRefMut<Box<Erased>, i32>; 2] = [owning_ref_mut_a.erase_owner(), owning_ref_mut_b.erase_owner()]; assert_eq!(*owning_refs_mut[0], 1); assert_eq!(*owning_refs_mut[1], 1); }
pub fn owner(&self) -> &O
[src]
pub fn owner(&self) -> &O
A getter for the underlying owner.
pub fn into_inner(self) -> O
[src]
pub fn into_inner(self) -> O
Discards the reference and retrieves the owner.
Trait Implementations
impl<O, T: ?Sized> Sync for OwningRefMut<O, T> where
O: Sync,
&'a mut T: Sync,
[src]
impl<O, T: ?Sized> Sync for OwningRefMut<O, T> where
O: Sync,
&'a mut T: Sync,
impl<O, T: ?Sized> AsMut<T> for OwningRefMut<O, T>
[src]
impl<O, T: ?Sized> AsMut<T> for OwningRefMut<O, T>
impl<O, T: ?Sized> PartialOrd<OwningRefMut<O, T>> for OwningRefMut<O, T> where
T: PartialOrd,
[src]
impl<O, T: ?Sized> PartialOrd<OwningRefMut<O, T>> for OwningRefMut<O, T> where
T: PartialOrd,
fn partial_cmp(&self, other: &Self) -> Option<Ordering>
[src]
fn partial_cmp(&self, other: &Self) -> Option<Ordering>
This method returns an ordering between self
and other
values if one exists. Read more
#[must_use]
fn lt(&self, other: &Rhs) -> bool
1.0.0[src]
#[must_use]
fn lt(&self, other: &Rhs) -> bool
This method tests less than (for self
and other
) and is used by the <
operator. Read more
#[must_use]
fn le(&self, other: &Rhs) -> bool
1.0.0[src]
#[must_use]
fn le(&self, other: &Rhs) -> bool
This method tests less than or equal to (for self
and other
) and is used by the <=
operator. Read more
#[must_use]
fn gt(&self, other: &Rhs) -> bool
1.0.0[src]
#[must_use]
fn gt(&self, other: &Rhs) -> bool
This method tests greater than (for self
and other
) and is used by the >
operator. Read more
#[must_use]
fn ge(&self, other: &Rhs) -> bool
1.0.0[src]
#[must_use]
fn ge(&self, other: &Rhs) -> bool
This method tests greater than or equal to (for self
and other
) and is used by the >=
operator. Read more
impl<O, T: ?Sized> Ord for OwningRefMut<O, T> where
T: Ord,
[src]
impl<O, T: ?Sized> Ord for OwningRefMut<O, T> where
T: Ord,
fn cmp(&self, other: &Self) -> Ordering
[src]
fn cmp(&self, other: &Self) -> Ordering
This method returns an Ordering
between self
and other
. Read more
fn max(self, other: Self) -> Self
1.21.0[src]
fn max(self, other: Self) -> Self
Compares and returns the maximum of two values. Read more
fn min(self, other: Self) -> Self
1.21.0[src]
fn min(self, other: Self) -> Self
Compares and returns the minimum of two values. Read more
impl<O, T: ?Sized> PartialEq<OwningRefMut<O, T>> for OwningRefMut<O, T> where
T: PartialEq,
[src]
impl<O, T: ?Sized> PartialEq<OwningRefMut<O, T>> for OwningRefMut<O, T> where
T: PartialEq,
fn eq(&self, other: &Self) -> bool
[src]
fn eq(&self, other: &Self) -> bool
This method tests for self
and other
values to be equal, and is used by ==
. Read more
#[must_use]
fn ne(&self, other: &Rhs) -> bool
1.0.0[src]
#[must_use]
fn ne(&self, other: &Rhs) -> bool
This method tests for !=
.
impl<O, T: ?Sized> From<O> for OwningRefMut<O, T> where
O: StableAddress,
O: DerefMut<Target = T>,
[src]
impl<O, T: ?Sized> From<O> for OwningRefMut<O, T> where
O: StableAddress,
O: DerefMut<Target = T>,
impl<O, T: ?Sized> From<OwningRefMut<O, T>> for OwningRef<O, T> where
O: StableAddress,
O: DerefMut<Target = T>,
[src]
impl<O, T: ?Sized> From<OwningRefMut<O, T>> for OwningRef<O, T> where
O: StableAddress,
O: DerefMut<Target = T>,
fn from(other: OwningRefMut<O, T>) -> Self
[src]
fn from(other: OwningRefMut<O, T>) -> Self
Performs the conversion.
impl<O, T: ?Sized> AsRef<T> for OwningRefMut<O, T>
[src]
impl<O, T: ?Sized> AsRef<T> for OwningRefMut<O, T>
impl<O, T: ?Sized> Send for OwningRefMut<O, T> where
O: Send,
&'a mut T: Send,
[src]
impl<O, T: ?Sized> Send for OwningRefMut<O, T> where
O: Send,
&'a mut T: Send,
impl<O, T: ?Sized> Eq for OwningRefMut<O, T> where
T: Eq,
[src]
impl<O, T: ?Sized> Eq for OwningRefMut<O, T> where
T: Eq,
impl<O, T: ?Sized> Deref for OwningRefMut<O, T>
[src]
impl<O, T: ?Sized> Deref for OwningRefMut<O, T>
type Target = T
The resulting type after dereferencing.
fn deref(&self) -> &T
[src]
fn deref(&self) -> &T
Dereferences the value.
impl<O, T: ?Sized> Hash for OwningRefMut<O, T> where
T: Hash,
[src]
impl<O, T: ?Sized> Hash for OwningRefMut<O, T> where
T: Hash,
fn hash<H: Hasher>(&self, state: &mut H)
[src]
fn hash<H: Hasher>(&self, state: &mut H)
Feeds this value into the given [Hasher
]. Read more
fn hash_slice<H>(data: &[Self], state: &mut H) where
H: Hasher,
1.3.0[src]
fn hash_slice<H>(data: &[Self], state: &mut H) where
H: Hasher,
Feeds a slice of this type into the given [Hasher
]. Read more
impl<O, T: ?Sized> DerefMut for OwningRefMut<O, T>
[src]
impl<O, T: ?Sized> DerefMut for OwningRefMut<O, T>
impl<O, T: ?Sized> Debug for OwningRefMut<O, T> where
O: Debug,
T: Debug,
[src]
impl<O, T: ?Sized> Debug for OwningRefMut<O, T> where
O: Debug,
T: Debug,
Blanket Implementations
impl<T> Erased for T
[src]
impl<T> Erased for T
impl<T, U> Into for T where
U: From<T>,
[src]
impl<T, U> Into for T where
U: From<T>,
impl<T> From for T
[src]
impl<T> From for T
impl<T, U> TryFrom for T where
T: From<U>,
[src]
impl<T, U> TryFrom for T where
T: From<U>,
type Error = !
try_from
)The type returned in the event of a conversion error.
fn try_from(value: U) -> Result<T, <T as TryFrom<U>>::Error>
[src]
fn try_from(value: U) -> Result<T, <T as TryFrom<U>>::Error>
try_from
)Performs the conversion.
impl<T> Borrow for T where
T: ?Sized,
[src]
impl<T> Borrow for T where
T: ?Sized,
impl<T> BorrowMut for T where
T: ?Sized,
[src]
impl<T> BorrowMut for T where
T: ?Sized,
fn borrow_mut(&mut self) -> &mut T
[src]
fn borrow_mut(&mut self) -> &mut T
Mutably borrows from an owned value. Read more
impl<T, U> TryInto for T where
U: TryFrom<T>,
[src]
impl<T, U> TryInto for T where
U: TryFrom<T>,
type Error = <U as TryFrom<T>>::Error
try_from
)The type returned in the event of a conversion error.
fn try_into(self) -> Result<U, <U as TryFrom<T>>::Error>
[src]
fn try_into(self) -> Result<U, <U as TryFrom<T>>::Error>
try_from
)Performs the conversion.
impl<T> Any for T where
T: 'static + ?Sized,
[src]
impl<T> Any for T where
T: 'static + ?Sized,
fn get_type_id(&self) -> TypeId
[src]
fn get_type_id(&self) -> TypeId
🔬 This is a nightly-only experimental API. (get_type_id
)
this method will likely be replaced by an associated static
Gets the TypeId
of self
. Read more